Path integrals on causal sets

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Path Integrals Without Integrals∗

Recently, we have developed an efficient recursive approach for analytically calculating the short-time expansion of the propagator to extremely high orders for a general many-body quantum system. Here we give brief overview of this approach and then demonstrate application of this technique by numerically studying the thermodynamical properties of a rotating ideal Bose gas of Rb atoms in an an...

متن کامل

Path Integrals for Stochastic Neurodynamics Path Integrals for Stochastic Neurodynamics

We present here a method for the study of stochastic neurodynamics in the framework of the "Neural Network Master Equation" proposed by Cowan. We consider a model neural network composed of two{state neurons subject to simple stochastic kinetics. We introduce a method based on a spin choerent state path integral to compute the moment generating function of such a network. A formal construction ...

متن کامل

Free Fermions on causal sets

We construct a Dirac theory on causal sets; a key element in the construction being that the causet must be regarded as emergent in an appropriate sense too. We further notice that mixed norm spaces appear in the construction allowing for negative norm particles and “ghosts”. This work extends the theory initiated in [1, 2]

متن کامل

Quantitative molecular thermochemistry based on path integrals.

The calculation of thermochemical data requires accurate molecular energies and heat capacities. Traditional methods rely upon the standard harmonic normal-mode analysis to calculate the vibrational and rotational contributions. We utilize path-integral Monte Carlo for going beyond the harmonic analysis and to calculate the vibrational and rotational contributions to ab initio energies. This is...

متن کامل

Iterated Path Integrals

The classical calculus of variation is a critical point theory of certain differentiable functions (or functional) on a smooth or piecewise smooth path space, whose differentiable structure is defined implicitly. Because of the importance of path spaces to analysis, geometry and other fields, it is desirable to develop a geometric integration theory or a de Rham theory for path spaces. Having i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Physics: Conference Series

سال: 2009

ISSN: 1742-6596

DOI: 10.1088/1742-6596/174/1/012046